

Bachelor of Science (B.Sc.) Semester—V (C.B.S.) Examination
MATHEMATICS
Paper—1
(M₉-Analysis)

Time : Three Hours]

[Maximum Marks : 60]

N.B. :— (1) Solve all the *five* questions.

(2) All questions carry equal marks.

 (3) Question Nos. **1** to **4** have an alternative. Solve each question in full or its alternative in full.

UNIT—I

 1. (A) Find the Fourier series for the function $f(x)$ defined as :

$$\begin{aligned} f(x) &= x + \frac{\pi}{2}, \quad -\pi < x \leq 0 \\ &= \frac{\pi}{2} - x, \quad 0 < x < \pi \end{aligned}$$

 and deduce that at $x = 0$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

6

 (B) Express $f(x) = \sin x$ as a Fourier cosine series in $0 \leq x < \pi$.

6

OR

(C) Find the Fourier series expansion for the function

$$f(x) = x - x^2, \quad -1 \leq x \leq 1.$$

6

 (D) Find the Fourier cosine series for the function $f(x)$ defined by :

$$f(x) = 2, \quad 0 \leq x \leq 1$$

$$= 0, \quad 1 < x < 2$$

6

UNIT—II

2. (A) Prove that if function f is continuous on $[a, b]$, then $f \in R(\alpha)$ on $[a, b]$. 6

(B) If $f \in R(\alpha)$ on $[a, b]$ and if $a < c < b$, then prove that $f \in R(\alpha)$ on $[a, c]$ and $f \in R(\alpha)$ on $[c, b]$. Also $\int_a^c f d\alpha + \int_c^b f d\alpha = \int_a^b f d\alpha$. 6

OR

(C) Explain when the function f is Riemann-Steiltjes (R-S) integrable on $[a, b]$. Hence show that a constant function $f(x) = k$ is R-S integrable on $[a, b]$. 6

(D) If $f \in R(\alpha)$ on $[a, b]$ and if there is a differentiable function on $[a, b]$ such that $F' = f$, then prove $\int_a^b f(x) dx = F(b) - F(a)$. 6

UNIT—III

3. (A) If $w = f(z) = u(x, y) + iv(x, y)$ is an analytic function at any point $z = x + iy$ of its domain D , then show that in polar form the Cauchy-Riemann equations are :

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \text{ and } \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}. \quad 6$$

(B) (i) If $f(z) = u(r, \theta) + iv(r, \theta)$ is an analytic function in z -plane, then prove that

$$u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta} = 0.$$

(ii) Find p such that the function $f(z) = r^2 \cos 2\theta + ir^2 \sin p\theta$ is analytic. 6

OR

(C) Prove that the function $u = x^3 - 3xy^2$ satisfies Laplace equation and determine corresponding analytic function in a finite region D . 6

(D) If $f(z) = u + iv$ is analytic function of z , then prove that :

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) |f(z)|^2 = 4 |f'(z)|^2. \quad 6$$

UNIT—IV

4. (A) Let the region R in z -plane be bounded by lines $x = 0$, $y = 0$, $x = 2$, $y = 1$. Find the region R' in w -plane by using the transformation $w = \sqrt{2} e^{i\pi/4} \cdot z + (1 - 2i)$. 6

(B) Show that every general bilinear transformation

$w = \frac{az+b}{cz+d}$ is the resultant of

$$w = z + d, w = \frac{1}{z} \text{ and } w = \beta z, c \neq 0. \quad \text{6}$$

OR

(C) Show that if there are two distinct invariant points p and q then the normal form of bilinear transformation $w = \frac{az+b}{cz+d}$ where $ad - bc \neq 0$ is

$$\frac{w-p}{w-q} = K \left(\frac{z-p}{z-q} \right). \quad \text{6}$$

(D) Show that the transformation $w = \frac{2z+3}{z-4}$ transforms the circle $x^2 + y^2 - 4x = 0$ into the straight line $4u + 3 = 0$. 6

UNIT—V

5. (A) If $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, $-\pi \leq x \leq \pi$ then show that $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$. 1½

(B) If the function $f(x)$ is defined as :

$$f(x) = \begin{cases} \pi & , -\pi \leq x \leq \frac{\pi}{2} \\ 0 & , \frac{\pi}{2} < x \leq \pi \end{cases}$$

then find the value of $f(x)$ at the point of discontinuity by Dirichlet's condition. 1½

(C) If $f_1(x) \leq f_2(x)$ on $[a, b]$ then prove that $\int_a^b f_1 d\alpha \leq \int_a^b f_2 d\alpha$. 1½

(D) Prove that if $f \in R(\alpha)$ and $g \in R(\alpha)$, then $f \cdot g \in R(\alpha)$. 1½

(E) If $u = x^3 - 3xy^2$, then find its harmonic conjugate v . 1½

(F) Prove that $f(z) = xy + iy$ is not analytic. 1½

(G) Find the fixed points of the bilinear transformation $w = \frac{3iz + 1}{z + i}$. 1½

(H) Find whether $w = \frac{2z + 1}{4z + 2}$ is a bilinear transformation. 1½